期刊论文: 1. Liang J., Zhang Y.,Zhong J. H*. and Yang H. T.,A novel multi-segment feature fusion based fault diagnosis approach for rotating machinery,Mechanical Systems and Signal Processing , 2019,122:19-41; 2. Zhong J. H.,Zhang J., Liang J. andWang H. Q.,Multi-fault rapid diagnosis for wind turbine gearbox using sparse Bayesian extreme learning machine, IEEE Access, 2019,7:773-781; 3. Zhong J. H.*,Wong P. K. and Yang Z. X., Fault diagnosis of rotating machinery based on multiple probabilistic classifiers,Mechanical Systems and Signal Processing, 2018,108:99-114; 4. Ma X. B., Wong P. K.,Zhao J., Zhong J. H.*,Huang Y. and Xu X.,Design and Testing of a Nonlinear Model Predictive Controller for Ride Height Control of Automotive Semi-active Air Suspension Systems,IEEE Access, 2018,6:63777-63793; 5. Zhong J. H., Wong P. K. and Yang Z. X.*, Simultaneous-fault diagnosis of gearboxes using probabilistic committee machine,Sensors, 2016,16(2):185; 6. Zhong J. H., Yang Z. X.* and Wong P. K., An effective fault feature extraction method for gas turbine generator system diagnosis, Shock and Vibration, 2016, 2016:1-9; 7. Liang J.,Zhong J. H.* and Yang Z. X.,Correlated EEMD and effective feature extraction for both periodic and irregular faults diagnosis in rotating machinery,Energies,2017, 10(10):1652; 8. Yang Z. X. andZhong J. H.*, A Hybrid EEMD-based SampEn and SVD for Acoustic Signal Processing and Fault Diagnosis,Entropy, 2016, 18(4):112; 9. Wong P. K.,Zhong J. H, Yang Z. X.* and Vong C. M., A new framework for intelligent simultaneous-fault diagnosis of rotating machinery using pairwise-coupled sparse Bayesian extreme learning committee machine,Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2017, 213(6):1146-1161; 10. Wong P. K.*,Zhong J. H.,Yang Z. X. and Vong C. M., Sparse Bayesian Extreme Learning Committee Machine for Engine Simultaneous Fault Diagnosis, Neurocomputing, 2016, 174:331-343; 11. Yang Z. X.*, Wang X. andZhong J. H.,Representational Learning for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning Machines Approach,Energies, 2016, 9(6):379; 12. Wong P. K.*,Yang Z. X., Vong C. M. andZhong J. H., Real-Time Fault Diagnosis for Gas Turbine Generator Systems using Extreme Learning Machine, Neurocomputing, 2014. 128: 249-257; 13. Yang Z. X.*, Wong P. K., Vong C. M.,Zhong J. H. and Liang J., Simultaneous-Fault Diagnosis of Gas Turbine Generator Systems Using a Pairwise-Coupled Probabilistic Classifier, Mathematical Problems in Engineering, 2013,2013(3):723-740. 会议论文: 1. Yang Zhixin, Hoi Wui Ian andZhong J. H., Gearbox Fault Diagnosis based on Artificial Neural Network and Genetic Algorithms,Proceedings of International Conference on System and Engineering, pp. 37-42, 2011.; 2. Yang Zhixin,Zhong J. H. and Wong Seng Fat, Machine Learning Method with Compensation Distance Technique for Gear Fault Detection,Proceedings of World Congress on Intelligent Control and Automation, pp. 632-637, 2011; 3. Zhong J. H., Yang Zhixin and Wong Seng Fat, Machine Condition Monitoring and Fault Diagnosis based on Support Vector Machine,Proceedings of International Conference on Industrial Engineering and Engineering Management, pp.2228-2233, 2010. |